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ANGULAR COEFFICIENTS IN SYSTEMS OF BODIES OF REVOLUTION 

M. M. Mel'man UDC 536.33 

The apparatus of differential geometry is used to calculate angular coeffi- 
cients. Examples are given. 

l~ 
ting the radiant heat transfer in various metallurgical and power units: converters, va- 
cuum units for degassing steel, furnaces for heating tubes and rolls of steel strip, recu- 
peraters for heating air and gas, boiler units, etc. 

The expression for the angular coefficient with an elementary area dS M at an area 
dSp (Fig. i) in a diathermal medium takes the form 

cos ~ COS 
% M - - d P  - -  a IMPI ~ dSp. (I) 

The quantities cos a, cos 8, and IMPI are found from the formulas [i] 

The angular coefficients between surfaces of revolution are widely used in calcula- 

COS O~ -- 
(N~, MP) 

, COS~ -- 
INMI IMPI 

IMPt = (MP, NIP) 1/2, 

(Np, MP) (2) 
INpI IMP{ ' 

(3) 
where NM, Np are the vectors of the normals to the areas dS M, dSp. 

Consider the case when dS M and dSp belong to surfaces of revolution S M and Sp. Suppose 
that SM(Sp) is formed by revolution around the axis ZI(Z 2) of some curve in the plane XIOIZ I 
(X202Z 2) of the rectangular Cartesian coordinate system OIXIYIZ I (O2X2Y2Z2). 

Introducing the spherical coordinates R, 8, ~, let M = M(R(8), 8, ~) = M(8, ~) be the 
radius vector of the point M. Then N M = M 8 x M~, where MS, M~ are vectors directed along 
the tangents to the coordinate lines ~ = const and 8 = const [2]. The projections of the 
vectors M, M 8, M~, and N M on the axes of the system OIXIYIZ I are given in Table i. Knowing 
the projection NM, it is simple to find INMI: 
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TABLE i. Projections of Vectors onto the Axes of a Rectangu- 
lar Cartesian Coordinate System 

M=M(R, 0,~);R, 0,~-are spherical coordinates; R=R(@) 

Axes vectors 

M I M0 = OM/00 i Mq)=OM/Ocp ] NM=MOXM~ 

X1 R sin 0 cos ~D (R sin 0+R cos 0) cos (p - -R sin 0 sin (p (R sin 0 - -  R cos 0) R sin 0 cos {p 

Y1 Rsin0sin(p (R sin 0-+-R cos 0) s i n~  Rsin0cos(p (R sin 0 - -  R cos 0) Rsin0sincp 

Z1 R cos 0 R cos 0 - R sin E) 0 (R cos 0-i- R sin 0) R sin 0 

M=m(p, 4, z); p, 4, z are cylindrical coordinates; p = p(z) 

vectors 

Axes M M~ =OM/O$ Mz=dM/Oz I N M ~ M~ X M z 

Xl 

Y1 

Z1 

p COS ~) 

p sin 

z 

--p sin 

p cos 

0 

~)co$ '~ 

! 

[3 COS ~) 

{D sin ~2 

-Oh 

X0 

Fig. I. Determining the angular co- 
efficients between eiementary areas. 

Fig. 2. Configuration of sur- 
faces in examples (a) and (b). 

INk[ = (N~, N~) ~/~= R (R ~ +IR~) I/2 sin O. 

The differential dS M is determined as follows [2]: 

dS M = INMldOd~. ( 4 )  

A n a l o g o u s  e x p r e s s i o n s  a r e  v a l i d  f o r  P, P~, P , ,  Np, a n d  [Np[, w h e r e  P =  P ( p ( ~ ) ,  ~, ~ ) - -  
P(n, ~) is the radius vector of the point P (Fig. i), 

{Npi = p (p2 + p2) l/~ sin N, dSp = INpI dNd~. (5) 

To calculate the scalar product of the vectors in Eqs. (2) and (3), consider the new rec- 
tangular Cartesian system OXoYoZ 0 (it may coincide with one of the already existing systems); 
the projections of the vectors MP, NM, Np on its axes are now found. 

Suppose that O10 and 030 are vectors connecting the origins of the old and new systems 
(Fig. i), while T I and T 2 are matrices of coordinate transformation of the vector on passing 
to the new system [3]. It follows from geometric considerations that: MP ==(P--O20)--(M-- 
0 1 0 ) .  Hence 
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TABLE 2. Angular Coefficients 0dM-P 
from the Element dS M of the Surface 
S M to the Surface Sp in Example (a) 
(Fig. 2) 

Angle O, 
dog 

0 
3 

18 
24 
30 
60 
86 
94 

120 
150 
180 

Angle r deg 
0 45  

0203 0203 
0195 0197 
0332 0389 
0232 0247 
0143 0132 
0031 0026 
0014 0012 
0046 0044 
0050 0050 
0049 0049 
0047 0047 

9 0  

0203 
0199 
1184 
0278 
0100 
0021 
0010 
0043 
0050 
0049 
0047 

Note. The figures following the de- 
cimal point are given. 

(MP)o = (P - -  0~0)o - -  ( M  - -  0~0)o = T7~  (P - -  0 2 0 h  - -  T T '  (M  - -  0 1 0 ) i  , ( 6 ) 

where (a) i is the column vector of the projections of a onto the axes Xi, Yi, Zi (i : 0, 2). 

Analogously 

(NM)o = TT I (NM)~, (Np)o = T71 (Np)2. ( 7 )  

If Sp is the part of the surface of revolution corresponding to the region G(nl < q < ~2, 
~z < 0 < #2) of variation of the coordinates D and ~, it follows from Eqs. (i) and (4) that 

TI2 ~2 
q)dM--P - -  j ' .I' COS(%COS~ 

m , ,  ~IMPI ~ INpId~d, .  ( 8 )  

F o r  S M a n d  Sp i n  t h e  a n a l o g o u s  c a s e ,  u s i n g  E q s .  ( 1 ) ,  ( 4 ) ,  a n d  ( 5 ) ,  i t  i s  f o u n d  t h a t  

~_~ 0~ ~ ~ ,~ 

SJ3 3 ~M-p  = ~ o,#, n , , ,  = IMPI ~ [NMI INpl dOdq)drld~, (9) 

where 

08 (P2 

= 3' J IN t e0e . 

The equations of the surfaces of revolution may be specified in any appropriate co- , 

ordinate systems [4]. If, for example, the cylindrical system p, ~, z is used, and the 
axis of revolution of the body coincides with the axis Z, the coordinates of the vectors M 
and NMhave [2] an entirely simple form (Table i), while INMI = p(p2 + l)ZI2. In Eqs. (8) 
and (9), only the variables of integration are changed in calculating the coefficients. 

3. Consider some examples of calculating the angular coefficients by the given method. 

a) Suppose that the surface S M is formed by the internal surfaces of a cone and a trun- 
cated cone, while Sp is formed by the lateral surface of a cylinder (Fig. 2). It is re- 
quired to find CdM-P. 

The radius vector MI of the point MeS M in the spherical system has the coordinates R(8), 
e, ~: 

R (0) 

(H + h)/cos 0, 0 ~< 0 ~< [31; 

Ro sin f3/cos (fJ ~- 0), f31 < 0 <.~ a/2; 

- - R o  sin ~/cos (0 + ~), ~/'2 .< 0 <~ ~. 

( z o )  

The radius vector P of the point PeSp in the cylindrical system has the coordinates p, ~, 

Y2; P(Y2) = Po" 
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TABLE 3. Results of Calculating ~dM~-P from Eq. (ii) (upper 
row) and the Formula of [5] (lower row) for Various h/p 0 
and s 

l/po n/po 
1 5 10 2 5  

1,5 

2 

5 

I0 

35 

6272 (3,3) 
6240 
3885 (3,3) 
3894 

05876 (3,3) 
05880 
01374 (3,3) 
01374 

00]063 (3,3) 
001063 

6650 (3,8) 
6661 

4969 (3,8) 
4976 
1737 (3,3) 
1740 

05842 (3,3) 
05842 

005243 (3,3) 
O05243 

6685 (3,16) 
6666 
4965 (3,8) 
4997 
1984 (3,3) 
1949 

08429 (3,3) 
08438 
01007 (3,3) 
01007 

6702 (3,16) 
6666 
4988 (3,16) 
4999 
1994 (3,8) 
1996 

09818 (3,8) 
09818 
02014 (3,3) 
02014 

Note. The figures after the decimal point are given; the num- 
ber of points in the Gaussian quadrature when calculating the 
integral in Eq. (ii) (taking account of the symmetry with res- 
pect to Y2) with respect to the coordinates ~ and Y2 is shown 
in parentheses. 

The system OIXIYIZ 1 is obtained by parallel transfer of the system 02X2Y2Z2, while 
(O~01)~ = (0, 0 - H). Suppose that the system OX0YoZ 0 coincides with the system 01XIYIZ I. 
Then TI, T2 are unit matrices; 0~0= 0~O1, O10 is a zero vector; (M)I and (NM)a in Eqs. (6) 
and (7) are calculated from Table 1 using Eq. (i0) for R(8). In calculating (P)~ and (Np)2, 
it must be taken into account that the axis of revolution of the cylinder coincides with 
axis Y2, while the polar angle is measured from the angle Z2, so that in the first column 
of the lower part of Table 1 the axes must be placed in the order Z l, X l, Yl; (P--O~O)~= 
(P0 sin ~, Y2, P0 cos ~), (Np) 0' = (P0 sin ~, 0, P0 cos ~). 

From a formula of the form of Eq. (8), taking account of the symmetry with respect to 
4, it is found that 

t ~' (Np, MP)(N M, MP) 

w h e r e  s i s  h a l f  t h e  c y l i n d e r  l e n g t h ;  ~1 = a r c c o s ( - ( H - Z M ) / U ) ;  ~2 = ~1 + a r c c o s ( P 0 / u ) ;  u = 
(X2M + (H - ZM)a) 1 ' a ,  XM, z M a r e  t h e  p r o j e c t i o n s  o f  M on t h e  a x e s  X ! a nd  Z 1. 

The Gaus s  f o r m u l a  i s  u s e d  t o  c a l c u l a t e  t h e  d o u b l e  i n t e g r a l  on t h e  r i g h t - h a n d  s i d e  o f  
Eq. (ii). The calculations are performed by a program written in FORTRAN IV for an EC- 
1033 computer. Table 2 shows the values of SdM-P as a function of the angles 9 and r163 = 
26; R0/p0 = 51.1; h/P0 = 35.4; H/00 = 68.9; a = 13~ ~ = 70~ 

According to the properties of mutuality and closure [5], the following relation holds 

1 f ~M-pdSM" ~ P - M =  1 - -  Sp ~ ( 1 2 )  

SM 

Calculating the integral on the right-hand side of Eq. (12), it is found that ~P-M = 
0.985, i.e., the discrepancy with the accurate value is 1.5%. 

b) The area dS M is at the center of the upper base of the truncated cone. The normal 
to the area passes t~rough the cylinder axis and perpendicular to it. For such a system, 
the formula expressing CAM -D in terms of elementary functions is known [5]. The results of 
the calculations from this formula and from Eq. (ii) (taking account of the symmetry with 
respect to Y2) are in good agreement (Table 3). 

c) A program has been written for calculating the angular coefficient between the la- 
teral surfaces of nonintersecting finite cylinders that are arbitrarily positioned in 
space. Account is taken in the program that the area dSMCS M may only influence the part of 
the cylinder Sp enclosed between two tangential planes to the cylinder Sp passing through 
the point M. Table 4 gives values of ~M-P calculated by this program for cylinders of iden- 
tical length whose axes form the angle a (Fig. 3). For parallel cylinders (a = 0), @M-P 
differs from the data of [6] by no more than 2%. The error in the results for cylinders 
with ~ = 45 and 90 ~ is no greater than 5% according to present estimates. 
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TABLE 4. Angular Coefficients ~M-P between Lateral Surfaces 
of Cylinders (Fig. 3). Upper Row: Present Calculation; Lower 
Row: [6] 

RolPo 

0,1 

1,0 

10,0 

I/po 

0,5 

1,0 

0,5 

0,5 

1,0 

5,0 

10,0 

0931 
0933 
1390 
1387 
0514 
0517 
0102 
0104 
0167 
0167 
0290 
0288 
0308 
0310" 

Sfpo 

0,5 I 2 ,0  

45 

0065 

0232 

0065 

0027 

0060 

0145 

0144 

~, deg 

90 0 

0000 OI51 
0149 ~ 

0000 0287 
0285 ~ 

0000 0110 
01103 

00094 0032 
0032 

0017 0061 
0062 

0057 0187 
0186 

0058 0230 
0229 

45 

0050 

OlO0 

0041 

0016 

0031 

0099 

0112 

90 

0000 

0000 

0000 

00045 

00086 

0036 

0044 

Notes. i. The figures following the decimal point are given. 
2. An asterisk denotes values calculated by the approximate 
formula recommended in [6], where it was indicated that this 
formula approximates the accurate Eq. (3) of [6] with an 
error of less than 1%. However, the approximate formula in- 
cludes an incorrect expression for ~_p(~ M-P when s = ~) as 
a factor. The corrected expression used in the present cal- 
culations takes the form: ~_p=(0.5/~) [((c/p0) 2 --(R0/P0+l)2)~ 
- ((c/P0) 2 - (R0/P 0-1)2) :12 + ~ + (R0/p0 - l)arcc0s ((R 0- 
po)/c) - (R0/p 0 + l)arccos((R 0 + p0)/c)], where c is the dis- 
tance between the axes of the cylinders. 

Fig. 3. Configuration of 
cylinders of finite length. 

NOTATION 

~dM-dP, ~dM-P, angular coefficients from the elementary area dS M to the elementary area 
dSp and the surface Sp; ~M-P, same from the surface S M to surface Sp; M, ~ radius vectors 
of points M and P; N M, Np, vectors normal to the areas dS M and dSp; T i, matrices transform- 
ing the vector coordinates from the Cartesian system OiXiYiZ i to the system OX0YoZ 0 (i = i, 
2); OiO, vector connecting the origins of the systems OiXiYiZ i and OX0YoZ o (i = I, 2). 
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HEAT TRANSFER DURING CHEMICAL BOILING IN THE 

PRESENCE OF FREE CONVECTION 

S. Mallik and Ya. M. Gumnitskii UDC 66.015.23:536.24 

Heat and mass transfer between a solid body and a liquid reagent in the 
presence of gas liberation is studied experimentally. The experimental 
results are generalized by a criterional dependence. 

The term "chemical boiling" refers to the process of heterogeneous chemical interaction 
between a solid body and a liquid reagent, accompanied by the liberation of gas. Examples 
of such an interaction are reactions of metals with acids, as a result of which hydrogen 
is liberated in the form of bubbles. The bubbles forming on the surface of a solid body in 
the course of their growth and detachment make the boundary diffusion layer of the liquid 
turbulent, thereby intensifying mass transfer. 

There is a qualitative and quantitative analogy between the processes under study and 
heat transfer accompanying boiling [I]. It is evident from the curves of the coefficient 
of mass transfer k versus the concentration of the reagent c R, obtained for the interaction 
of magnesium with hydrochloric acid in the presence of free convection and presented in Fig. 
1 (curves 1 and 2), that as the motive force (concentration) increases, the coefficient of 
mass transfer increases, reaches a maximum, and then decreases. The analog of concentra- 
tion in a mass transfer process is the temperature difference in heat transfer, and the 
coefficient of mass transfer k is the analog of the coefficient of heat transfer ~. 

The analogy is confirmed experimentally for other characteristics of chemical boiling 
also. In particular, the rate of growth of the bubbles, the number of gas-formation cen- 
ters, and the detachment diameters of the bubbles obey analogous laws of heat transfer ac- 
companying boiling. For example, the investigation of the detachment diameter of CO 2 
bubbles showed that its value is independent of the reagent concentration and is determined 
by the surface tension force (quasistatic regime). In the case of the detachment of H a 
bubbles the inertia from the side of the surrounding liquid plays the main role (dynamic re- 
gime), while the detachment diameter do, as in the case of heat transfer accompanying boil- 
ing, is proportional to d o ~ Ja =j3 

The kinetic laws in the process of chemical boiling in the presence of forced convec- 
tion are analogous. At low concentrations the transport of the reagent into the reaction 
zone plays the main role, while at high concentrations gas formation plays the main role [2]. 

I I L . - i / ~%~Z o 

0 

j o o 

�9 --/ 

o--Z 

0--3 

#o 80 /zo c R 

Fig. i. Coefficients of mass transfer 
k (m/sec) and heat transfer ~ (W/(m.K)) 
versus the reagent concentration c R (kg/ 
m 3) (i, 3: the initial temperature of 
the solution is equal to 40~ 2, 4: the 
initial temperature of the solution is 
equal to 20~ 
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